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Abstract 

Biomaterials, both natural and synthetic, play a crucial role in medical applications 

by interacting with biological systems to treat or replace tissues. These materials 

must exhibit biocompatibility to avoid complications like immunological rejection 

and be degradable to ensure proper breakdown within the body after fulfilling their 

intended function. Common natural biomaterials include collagen, gelatin, and 

alginates, while synthetic materials such as polyurethane, fibronectin, and ceramics 

are also widely used. Over the past decade, there has been significant progress in 

the field of biomaterials, driven by advances in regenerative medicine and tissue 

engineering. These materials are now frequently used in a variety of clinical 

applications, from tissue healing and molecular probes to nanoparticle biosensors 

and drug delivery systems. Despite the progress, understanding how biomaterials 

interact, integrate, and function in complex biological environments remains a 

significant challenge. The ability of biomaterials to restore and enhance biological 

functions, particularly in areas such as tissue engineering, orthopedic surgery, and 

neural implants, has demonstrated substantial improvements in patient outcomes 

and quality of life. Key to their success in these applications are their 

biocompatibility, long-term stability, and effective integration with host tissues. 

This paper explores the evolving role of biomaterials in medical practice, 

evaluating their potential, current use, and ongoing challenges in clin ical settings, 

with a focus on their contributions to healthcare advancements and patient care.  

© The Author 2025. 
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1. Introduction 

Biomaterials include any type of material, natural or synthetic, that interacts with biological systems, mainly to 

treat or replace tissues. An important characteristic of biomaterials is that they are biocompatible with the body 

in order to avoid numerous complications, such as immunological rejection. Moreover, biomaterials must be 

easily degradable to be properly broken down in the organism after successfully performing the function. 

https://creativecommons.org/licenses/by/4.0/
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Biomaterials are classified as natural or synthetic. Frequently used natural biomaterials include collagen, 

alginates, gelatine, cellulose, while synthetic biomaterials include fibronectin, polyurethane, glass and ceramics 

[1]. Nowadays, biomaterials are frequently used in medical practice, most often to promote the healing of human 

tissues, such as molecular probes, nanoparticle biosensors, and drug delivery systems. However, despite the 

advances in this field, understanding how these materials behave, integrate and function in complex biological 

environments remains a challenge for medical professionals and researchers [2]. This paper explores the roles 

and potentials of different biomaterials in clinical applications, highlighting their practical uses and evaluating 

their significant influence on healthcare and medical advancements. 

2. Injectable biomaterials, bioactive coatings, and surface modification 

Provide sufficient detail to allow the work to be reproduced. Methods already published should be indicated by 

reference: only relevant modifications should be described. 

2.1. Injectable biomaterials 

Due to their distinguished properties, such as the ability to tailor both chemical and physical properties, and 

ease of handling, injectable biomaterials have been extensively studied and evaluated for applications in 

regenerative medicine. They can be of natural origin, synthetically produced, or a combination of both. Some 

examples of natural injectable biomaterials approved by the FDA for use include collagen and hyaluronic acid. 

Synthetic biomaterials include PMMA, PLA, and Calcium hydroxylapatite (CaHA). Injectable biomaterials 

offer a unique solution for clinical applications by enabling the localized delivery of bioactive molecules and 

growth factors to targeted tissues. This method is especially advantageous in drug delivery, treating bone 

fractures, tumor resections, and craniofacial defects, promoting faster healing and tissue repair [1]. 

2.2. Bioactive coatings 

Bioactive coatings are engineered to establish a direct chemical bond between implants and biological tissues, 

creating a strong and stable connection. The development of these coatings relies on their ability to control their 

chemical reactivity with body fluids. To be effective, these materials must exhibit several key characteristics, 

including biocompatibility, the ability to mitigate inflammation, osteoconductivity, antimicrobial properties, 

resistance to corrosion, and suitable mechanical strength [3]. For example, Titanium Oxide (TiO2) coatings, are 

mainly used on titanium-based implants to improve corrosion resistance. Chitosan-based bioactive coatings 

exhibit high biocompatibility and anti-microbial properties. Calcium Phosphate coatings mimic the mineral 

composition of bone tissue. Hydroxyapatite (HA) Coatings are applied to encourage osseointegration and 

promote bone growth [4]. 

2.3. Surface modifications  

Surface modification of biomaterials involves altering the outermost layer of a material to enhance its interaction 

with the biological environment. Given that the immune system can reject implanted biomaterials, potentially 

causing severe complications, surface modification plays a critical role. This approach is extensively employed 

to improve the performance, biocompatibility, and functionality of medical implants, prosthetics, and various 

biomedical devices [5]. Although the use of biomaterials is growing rapidly, significant challenges related to 

their production, safety, and biocompatibility continue to be major concerns. Biocompatibility-related failures 

present significant obstacles, influenced by shape, size and duration of use [1]. 
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3. Biomaterials in cardiovascular devices 

The cardiovascular system is divided into pulmonary and systemic circulation loops, which work to ensure 

proper blood flow in the body. Pulmonary circulation facilitates oxygenation of blood, while systemic 

circulation distributes oxygen-rich blood to different body parts [6].Various cardiovascular health issues can 

arise, including endocarditis, rheumatic heart disease, and irregular conduction systems. Cardiovascular disease 

encompasses coronary artery disease (CAD), coronary heart disease (CHD), peripheral artery disease (PAD), 

cerebrovascular disease, and aortic atherosclerosis. CAD, characterized by decreased myocardial perfusion, can 

lead to angina, myocardial infarction (MI), or heart failure, contributing to a significant proportion of heart 

conditions. Cerebrovascular disease involves strokes and transient ischemic attacks, while PAD primarily 

affects the extremities, often resulting in discomfort. Aortic atherosclerosis refers to thoracic and abdominal 

aneurysms associated with arterial disease. Atherosclerosis, caused by dyslipidemia, immunological events, 

inflammation, and endothelial dysfunction, can lead to plaque formation and vessel stenosis, compromising 

blood flow [7]. Significant progress has been made in the field of synthetic materials over centuries, enhancing 

our understanding of biomaterial interactions with human tissue. Biomaterials, used to modify natural tissue 

functions, constantly interact with bodily fluids to optimize physiological processes [8]. Identified as substances 

capable of enhancing or replacing tissue, organs, or bodily functions, biomaterials exclude drugs and aim to 

improve the quality of life, according to the National Institutes of Health [9]. Metals like stainless steel, cobalt, 

titanium, and shape memory alloys are prevalent in cardiovascular medicine for producing artificial heart valves, 

endovascular stents, and stent-graft combinations. Stainless steel, known for its high resistance to heat and ease 

of maintenance, is commonly used and sterilized due to its inert nature. 316L steel, characterized by high 

hardness, corrosion resistance, and blood compatibility, is frequently utilized in stents and artificial heart valves. 

Titanium, highly biocompatible with the human body, has a superior strength-to-weight ratio compared to 

stainless steel. It is inert, resistant to bodily fluids, and commonly employed in the production of defibrillators, 

pacemakers, stents, and artificial heart valves [10]. Blood vascular prosthesis is a widely utilized technique for 

treating damaged blood vessels. Vascular bypass, also known as vascular graft technology, involves surgical 

intervention to alleviate obstruction by reconnecting blood vessels to facilitate easy blood flow. By bypassing 

damaged vessels, this procedure maintains normal circulation between healthy areas. The optimal resources for 

vascular bypasses include the patient's own vessels or those from another individual.  

Commonly used materials in this procedure include polyethylene terephthalate and polytetrafluoroethylene 

(PTFE). The objective is to develop multi-layered vascular grafts combining synthetic polymers (ePTFE, PET, 

PU, PLA, or PCL) with natural substances (collagen, elastin, gelatine, lecithin) and introducing biologically 

active compounds (peptides, vascular growth factors, antibodies, plasminogen activators) and specific cell types 

(HUVECs, HUASMCs, or fibroblasts) on each layer to mimic vascular system structure and cellular 

environment, enhancing biocompatibility and minimizing immune responses [11]. Patients with valvular heart 

disease are often treated with a device or synthetic heart valve when one of the heart valves functions 

improperly. Prosthetic heart valves are categorized into two groups based on their functionality: biological and 

mechanical valves. Biological valves consist of biological or synthetic components like PTFE and Dacron. 

Elastomers, including polyurethanes and silicones, titanium, pyrolytic carbon, and metal alloys, are commonly 

used components in prosthetic heart valves (PHVs). Elastomers are valued for their ability to resist deformation 

under extreme conditions without breaking and returning to their original shape when stress is relieved. 

Polyurethanes are extensively studied for PHVs due to their biocompatibility and a range of formulations, but 

challenges include stability, susceptibility to calcification leading to early failure. Metals like titanium and 

stainless steel are frequently used in PHV construction due to their durability and compatibility. Pyrolytic carbon 

stands out for its exceptional properties such as toughness, clot prevention, and blood compatibility, making it 

an appealing material for PHVs. Bio-prosthetic heart valves, also known as tissue valves, demonstrate favorable 

hemodynamic properties without requiring continuous anticoagulant therapy as they are composed partially or 

entirely of biological materials sourced from humans or animals.  
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Natural biomaterials commonly used in bioprosthetic heart valves (BPHVs) include decellularized tissues such 

as small intestine submucosa, pericardium, heart valves, and arterial walls [12]. Stents are devices used to open 

or bypass blood vessels carrying oxygenated blood to the heart. These stents, regardless of being metallic or 

plastic, are inserted into the blood vessel lumen [8]. An exciting development in stent technology is the use of 

magnesium and its alloys known for their biodegradability, biosafety, structural qualities, and low restenosis 

risk. Biodegradable stents can also be made from zinc alloys and biodegradable polymers such as poly (lactic 

acid) (PLA) and polycaprolactone (PCL). These materials break down into elements metabolized by the patient, 

aiming to maintain blood vessel function and patency. Proper design and refinement of vascular stents are 

crucial to treat vessel obstructions, clear thrombi, and restore vascular function, ensuring secure placement and 

minimal restenosis risk [13]. To ensure safe and effective use of medical devices in contact with blood, surface-

induced adverse events like blood coagulation, thrombus formation, and complement activation must be 

prevented. Addressing these issues often involves surface modifications, coatings, or altering the physical and 

chemical properties of biomaterial surfaces. Blood clotting and cellular activation are triggered by protein 

adsorption, leading to device-related thrombus formation. Regulating the adsorption of clotting factors like 

immune globulins, fibrinogen, HMKW, and complement factors can help prevent the activation of defense 

mechanisms and blood cells, ensuring the proper function of medical devices [14].  

 

Table 1. Summary of main sections of biomaterials in cardiovascular devices 

Sections Key points References 

Biomaterials in 

cardiovascular 

devices 

Metals: stainless steel, cobalt, titanium, shape memory alloys 

Synthetic polymers: ePTFE, PET, PU, PLA, PCL 

Natural substances: collagen, elastin, gelatin, lecithin 

[10] 

Applications and 

innovation 
Blood vascular prosthesis, prosthetic heart valves, stents 

[11], [12], 

[13] 

considerations 
Biocompatibility, mechanical properties, surface modifications, 

regulatory factors 
[14] 

4. Biomaterials in orthopedics 

Biomaterials have played a crucial role in the evolution of orthopedics, making significant contributions to the 

field. These substances have become increasingly vital with the advancement of modern medicine and material 

processing [15]. They are tailored materials that can be used alone or in combination with complex systems to 

modulate living systems, guiding therapeutic interventions [16]. Designed to interact with biological systems, 

biomaterials are particularly important for tissue, organ, and system reconstruction and replacement in cases of 

damage or dysfunction [15]. Initially, biomaterial use in medicine featured inert materials mimicking the 

composition of hard tissues like cartilage and bones, but it has progressed with regenerative medicine playing a 

key role in tissue preservation, especially in the early stages of disease [16]. This evolution has led to significant 

advancements in the field. 

Biomaterials must exhibit biocompatibility, high bio-inertness, and biostability to ensure successful medical 

function without adverse reactions [15]. These materials must also have suitable weight, elastic modulus, and 

practical applicability. Biomaterials, such as artificial joints and bone grafts, have transformed treatment 

approaches for musculoskeletal conditions, with ongoing advancements in orthopedics applications for artificial 

joint modelling, bone grafting, and regeneration techniques [15]. Recommendations are provided to improve 

healthcare practices in this field. 

4.1. Biomaterials in designing artificial joints 

Recent advancements in artificial joints, such as hip and knee replacements, have been significantly influenced 

by biomaterial innovations. Traditional metal choices like stainless steel and titanium, known for their strength 
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and durability, have been long-standing favorites in orthopedic treatments [17]. However, a shift is occurring 

as orthopedic practices increasingly adopt advanced biomaterials with a more nuanced selection approach. 

Modern artificial joint designs prioritize both structural integrity and biocompatibility, utilizing a range of 

biomaterials tailored to specific purposes. Various biomaterials and their classifications will be discussed in the 

subsequent sections. 

4.2. Ceramics 

Ceramics, prominent in everyday interactions, now offer a range of engineering designs tailored for high -

temperature and high-strength applications [18]. Through the fusion of ceramic powders like alumina and 

zirconia, orthopaedic ceramics have found a niche in joint replacements, particularly in total hip replacements 

where they account for over 40% of usage in the US and even higher in the UK [19]. This trend is expected to 

continue with the expanding adoption of ceramics in various countries.  

Orthopaedic ceramics' fracture resistance is influenced by internal flaws, such as poor fusing or large grains. To 

enhance fracture strength, experts work towards achieving nearly full density with alumina ceramics of smaller 

size. Despite their brittleness, these materials offer wear and scratch resistance due to their hard composition. 

Additionally, their increased hydrophilicity compared to metal surfaces reduces friction with bones, facilitating 

easier installation and smoother movement of patients [19].  

Alumina and zirconia are commonly used ceramic biomaterials in total joint replacement, with alumina 

historically favored in hip replacements for its beneficial qualities. Zirconia, which was popular between 1985 

and 2001, saw a decline in global supply due to the failure of its primary manufacturing firm [19]. Zirconia was 

preferred over alumina for its higher strength. Alumina matrix composites have been available since 2003, 

offering advantages over alumina in terms of fracture toughness, strength, and wear resistance [19]. Oxidized 

zirconium, created by heating zirconium alloy devices in the presence of air, forms a black zirconium oxide 

ceramic intended for hard-on-soft bearings in total knee and hip arthroplasty. However, research and innovation 

may expand its use to hard-on-hard bearings in the future. Each ceramic component's unique characteristics 

determine its applications and preferences, contributing to positive patient outcomes through longer-lasting 

implants and reduced risks of complications [19]. 

4.3. Polymeric materials as biomaterials 

Polymers, both natural and synthetic, offer advantageous properties for orthopedic procedures. They exhibit 

high intrinsic osteogenic and osteoimmune modulating potential, as well as the ability to withstand 

physiological stresses without fracturing or distortion [15]. Natural polymers initially outperformed traditional 

synthetic materials in biological aspects, offering high chemical versatility and excellent biodegradability [20]. 

Synthetic polymers were later developed to reduce host reactions to biomaterials. Non-biodegradable synthetic 

polymers display high biological inertness and customizable mechanical properties but may fail in orthopedic 

implants due to issues such as stress shielding-induced bone resorption, infections, and poor tissue integration 

at the interface [21]. Examples of such polymers include poly (methyl methacrylate), polyether ether ketone, 

and polyethylene. Biodegradable synthetic polymers, like polylactic acid, polyglycolic acid, and polylactic-co-

glycolic acid, offer superior mechanical properties and thermal adaptability, making them suitable for 

regenerative medicine applications [15]. The unique properties of polymers make them indispensable for 

potential advancements in orthopedic care [21].  

4.4. Biomaterials as bone grafts 

Biomaterials have significantly expanded the options for bone grafting, particularly in orthopedic surgery. Bone 

grafts involve the transplantation of bone fragments within the body or from a donor to repair or replace 

damaged bones [22]. Ideal biomaterial substitutes for bone repair should possess osteoinductive, osteogenic, 

and osteoconductive properties [23]. Osteoinductive capabilities stimulate the recruitment and differentiation 
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of host mesenchymal stem cells into bone and cartilage-forming cells, while osteogenic properties facilitate new 

bone formation using cells from the patient or a donor [22]. Osteoconductive characteristics promote the growth 

of host capillaries, connective tissue, and mesenchymal cells within the implanted scaffold, creating a favorable 

environment for cell attachment, proliferation, and the formation of new bone tissue.  

For bone replacements in orthopedic surgery, materials must possess mechanical properties for support and 

stability to enable movement. They should also be hydrophilic to ensure good interface with human bone and 

minimize risks of complications such as systemic toxicity, teratogenic, carcinogenic, or antigenic reactions, 

which can lead to serious health issues [22].  

Ease of supply in large quantities at reduced costs, along with easy sterilization, is beneficial for healthcare 

practitioners to minimize material purchases [24]. Further studies and innovations are necessary to develop the 

ideal bone reconstruction material. Substitutes can be natural or synthetic, each with distinct characteristics. 

There are various classes of natural bone substitute materials, such as autografts, allografts, xenografts, 

photogenic material, and bone graft material from extracted teeth [25]. Autografts have high osteogenic and 

osteoinductive properties, promoting bone formation and cell differentiation. However, their use may be limited 

due to donor site morbidity and limited tissue availability. Allografts, derived from the same species as the host, 

come in different forms and can be customized for specific patient needs. Xenografts, harvested from a species 

with a different genetic composition, present some challenges in usage. Photogenic materials, sourced from 

plant origins like coral and marine algae, offer alternative options [26]. Bone graft material from extracted teeth 

is used by dentists to address dental deficiencies. The selection of natural graft materials depends on material 

characteristics and patient conditions, requiring collaboration among healthcare providers for optimal medical 

outcomes [22].  

4.5. Synthetic bone grafts 

Synthetic bone substitute materials are categorized into three classes. Firstly, calcium phosphate ceramics like 

hydroxyapatite and tricalcium phosphate, and calcium phosphate cements, which are two or three-component 

systems consisting of materials such as hydroxyapatite and tricalcium phosphate [27]. The second class 

incorporates composite bone substitute materials, composed of a matrix and reinforcements, which may be 

continuous or discontinuous [22]. These synthetic substitutes are often utilized in conjunction with growth 

factors to enhance normal bone healing. 

4.6. Biological growth factors  

Growth factors (GFs) are molecules that can promote various cellular processes, including differentiation, 

proliferation, migration, and multicellular morphogenesis [28]. In orthopaedics, experts have explored the 

localized administration of signalling modules as stimulators for tissue regeneration, aiming to avoid the 

possible risks associated with systemic exposure, such as increased cancer risk [29]. However, the short 

effective half-life of growth factors at the surgical site, along with their limited interactions with the extracellular 

matrix and susceptibility to environmental changes, pose challenges for successful therapy [30]. The 

development of recombinant technologies and drug delivery systems using various carriers is crucial to address 

the limitations in delivering growth factors effectively for therapeutic purposes.  

4.7.  Nanomaterials  

Engineered nanomaterials, small substances utilized in medicine, technology, and engineering, replicate the 

intricate structure of natural bone matrix, fostering cell adhesion and proliferation, offering biocompatibility, 

and enhancing mechanical properties. In orthopedics, nanotechnology focuses on leveraging scaffolds to 

enhance the interface between native bone and orthopedics implants [31]. Nanotechnology has the potential to 

revolutionize orthopedics surgery by improving diagnosis and treatment. Understanding cell-biomaterial 
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interactions at the nanoscale has propelled the increased use of nanomaterials in bone regeneration, surpassing 

the use of microscale materials [32]. Ongoing research aims to further enhance the properties of these 

nanomaterials, ultimately leading to improved healthcare outcomes. 

4.8. 3D printing technology 

Three-dimensional printing, a key advancement in manufacturing and technology, facilitates the development 

of materials for customizable bone regeneration devices [33]. Patient-specific instruments (PSIs) created 

through 3D printing, such as personalized surgical guides, enable surgeons to perform precise orthopedics 

procedures [34]. Compared to standard implants, 3D-printed implants offer advantages like reduced blood loss 

and lower readmission rates following surgery. The technology's adherence to regulatory standards has led to 

global approval [33], and ongoing advancements are expected to significantly impact bone regeneration 

procedures in the near future. 

 

Table 2: Summary of biomaterials in orthopedics 

Orthopedic 

biomaterials 

Key points References 

Biomaterials in 

designing of 

artificial joints 

-Advancements in artificial joints have been influenced by biomaterial 

innovations 

-Materials used: stainless steel and titanium 

-Modern designs prioritize structural integrity and biocompatibility 

[17] 

Ceramics 

-Used in high-strength applications including joint replacements 

-Materials used: alumina and zirconia 

-Characterized by fracture resistance and hydrophilicity 

[18],[19] 

Polymeric 

materials as 

Biomaterials 

-Natural polymers offer chemical versatility 

-Synthetic polymers have high biological inertness 

-Biodegradable polymers are used in regenerative medicine 

[15], 

[20],[21] 

Biomaterials as 

Bone grafts 

-Important for repair and replacement 

-Natural grafts include autografts, allografts, xenografts 

-Synthetic grafts include calcium phosphate ceramics and composites 

[22],[23], 

[24],[25] 

Nanomaterials 

-Replicate natural bone matrix structure 

-Enhance cell adhesion and proliferation 

-Include carbon nanotubes, graphene, and hydroxyapatite 

[31],[32] 

3D Printing 

Technology 

-Allows the creation of customizable bone regeneration devices and 

patient-specific instruments 

-Enhance personalized surgical guides 

-Reduces the blood loss and readmission rates 

[33],[34] 

5. Nanotechnology in biomaterials  

Nanotechnology, a rapidly advancing field over the last 50 years, intersects multiple disciplines including 

physics, biology, pharmacy, electronics, chemistry, and medicine, with a focus on materials sized between 1 to 

100 nanometers [35]. These nanomaterials exhibit unique properties that resemble components of the 

extracellular matrix, facilitating the direct delivery of active substances. Their high surface area to volume ratio 

endows them with distinct features such as enhanced mechanical properties and potential antiviral, antibacterial, 

and antifungal capabilities [36]. Nanoparticles have the ability to penetrate cell membranes, which aids protein 

absorption, making them particularly useful in drug delivery and tissue regeneration applications [37]. 

Furthermore, these nanomaterials demonstrate outstanding thermal and electrical conductivity and can induce 
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magnetism in typically non-magnetic materials when reduced to the nanoscale. They also offer biological 

benefits such as biocompatibility, low immunogenicity, and biodegradability [38]. 

5.1. Applications of nanomaterials 

5.1.1. Tissue regeneration  

Utilizing nanotechnology, biocompatible nanoscale scaffolds resembling normal extracellular matrices can be 

engineered for tissue regeneration, allowing for precise control over cellular behavior and the development of 

implantable tissues. This approach finds applications in regenerating various tissues such as neural, cutaneous, 

osseous, cardiac, and cartilaginous tissues [37], [39], [40].   

5.1.2. Bone regeneration  

Nanomaterials like carbon nanotubes, graphene, and hydroxyapatite nanoparticles serve as scaffold materials 

for bone tissue regeneration by offering mechanical support and guiding natural regeneration processes. Their 

biodegradability allows for seamless integration within the body, eliminating the need for retrieval procedures. 

Additionally, these nanomaterials function as carriers for growth factors, bioactive compounds, and 

pharmaceuticals, augmenting bone repair and regeneration [38].  

5.1.3. Neural tissue regeneration 

Electroactive, biodegradable, conductive nanomaterials were created by polymerizing poly(3,4-

ethylenedioxythiophene) nanolayer onto the channel surface of chitosan/gelatine scaffolds. These scaffolds 

showed superior neural stem cell adhesion and proliferat ion. Neural stem cells cultured on these scaffolds 

successfully differentiated into mature neurons and astrocytes [41].  

5.1.4. Cardiac tissue regeneration 

In cardiac tissue regeneration, nanomaterials offer diverse applications. They can be integrated into scaffolds to 

bolster mechanical support, foster cellular proliferation, and steer cell differentiation, facilitating the restoration 

of impaired cardiac tissue. Notably, carbon nanotubes feature prominently in constructing 3D scaffolds 

conducive to cardiomyocyte growth. Furthermore, nanomaterials like gold nanorods present opportunities for 

delivering bioactive agents such as microRNA and growth factors to enhance cellular activities [42].  

5.1.5. Cartilage regeneration 

Nanomaterials exhibit unique physicochemical characteristics at the nanoscale, exerting significant influence 

on cellular behavior encompassing morphology, cytoskeletal organization, motility, and gene regulation. When 

harnessed in nanocomposite scaffolds mimicking human cartilage properties, these materials enhance cell 

growth, differentiation, adhesion, and extracellular matrix production. This emulation fosters improved tissue 

functionality and growth. Moreover, nanomaterial incorporation enhances the mechanical robustness of 

engineered cartilage constructs, rendering them more resilient to joint biomechanical stressors [40].  

5.1.6. Skin regeneration  

Nano-drug delivery systems enhance the efficacy of therapeutic agents like growth factors by prolonging drug 

release, shielding it from degradation, and augmenting skin retention, thereby fostering enhanced wound healing 

and skin regeneration. Nanohydrogels, characterized as three-dimensional polymeric networks, represent a 

promising approach for wound management, offering moisture retention, fluid absorption, and a conducive 

environment for wound recovery. In wound care, antimicrobial nanoparticles integrated into dressings play a 

pivotal role in infection prevention. Additionally, the integration of antimicrobial nanomaterials like 
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hydroxyethyl cellulose-silver and nano-TiO2 hydrosol into scaffolds for skin regeneration underscores their 

potential to create a healing-oriented environment and promote tissue repair [43].  

6. Biomaterials for tissue engineering 

6.1. Scaffold design 

Scaffold design plays a critical role in tissue engineering by providing a framework for cell attachment, 

proliferation, and differentiation, mimicking the extracellular matrix (ECM) of natural tissues. Various 

polymers, including natural, synthetic, and composite materials, are used in scaffold design to create 

biomaterials with specific properties conducive to tissue regeneration [44]. Natural polymers such as collagen, 

fibrin, and hyaluronic acid promote cell adhesion and growth, resembling the microenvironment of natural 

tissues. Incorporating bioactive substances like peptides and growth factors enhances the regenerative capacity 

of these scaffolds [45].  

Synthetic polymers like poly(lactic-co-glycolic acid) (PLGA) and polyethylene glycol (PEG) offer controlled 

release of bioactive molecules, adjustable mechanical properties, and tailored degradation rates [45]. Scaffold 

properties can be modified through polymer composition and structure manipulation to meet tissue engineering 

requirements. Techniques like electrospinning produce nanofibrous scaffolds that closely mimic natural tissue 

architecture [46]. Composite materials, incorporating inorganic components or a blend of natural and synthetic 

polymers, provide versatility in scaffold design. For instance, incorporation of ceramic particles like tricalcium 

phosphate or hydroxyapatite improves bioactivity and mechanical strength, making them suitable for bone tissue 

engineering [47]. Additionally, adding conductive materials such as graphene or carbon nanotubes facilitates 

electrical stimulation and enhances neural tissue regeneration. Scaffold design influences cell activity, nutrient 

transport, and tissue development, making it a fundamental aspect of tissue bioengineering [48]. To ensure 

scaffold degradation aligns with tissue regeneration processes, factors like degradation mechanisms, structural 

design, and material selection must be considered. Biodegradable scaffolds made from collagen, PCL, or PLGA 

break down gradually into non-toxic byproducts, promoting tissue remodeling and growth [49]. Bioactive 

degradation products released during scaffold breakdown can regulate cellular responses and tissue 

regeneration. Various techniques such as phase separation, 3D printing, and electrospinning are employed to 

control scaffold design and shape, optimizing properties like pore size, interconnectivity, and mechanical 

characteristics for tissue regeneration. Mechanical properties of scaffolds, including strength, elasticity, and 

stiffness, are tailored to match the characteristics of target tissues and withstand physiological stresses during 

tissue regeneration. Mechanical signals are crucial for controlling cell behavior, differentiation, and tissue 

remodeling [50]. 

6.2. Biocompatibility assessment 

Biomaterials in tissue culture are most effective when they blend into the biological environment without 

causing any negative side effects. This complex problem requires careful consideration of many important 

aspects, including material selection, immunogenicity assessment, degradation kinetics, evaluation of the 

cellular response, and creation of customized biomaterial formulations.  

Material selection: The first step regarding biocompatibility is the careful selection of biomaterials, 

which combines the special benefits and challenges of synthetic polymers like polyethylene glycol (PEG), 

natural polymers like collagen, and composite materials. The material chosen needs to comply with mechanical 

and structural specifications and mimic the natural extracellular matrix [45].  

Immunogenicity Assessment: the examination of immunogenicity is closely related to biocompatibility. 

Thorough evaluation using in vitro tests indicates cytokine and cell responses, guiding mitigation efforts to 

reduce immunogenicity. This is essential for fostering a harmonious interaction between the biomaterial and the 

host tissue [51].  
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Degradation Kinetics: Knowledge of degradation kinetics is necessary for temporal biocompatibility 

considerations. degradation rates that are ideal coincide with the timescales for tissue regeneration, avoiding 

damage to the scaffold and preventing the process of natural tissue remodeling. Optimizing the degradation 

properties guarantees sufficient assistance during crucial stages of recovery and renewal [52].  

Cellular Response Evaluation: the assessment of cellular response is fundamental to improving 

biocompatibility. Investigating cell adhesion, proliferation, and differentiation in the presence of the biomaterial 

is possible through in vitro research that makes use of cell culture models. Modifications to establish an 

environment conducive to tissue growth are guided by these investigations [53].  

Clinical Translation and Potential Implications: in addition to advancing science, successful 

biocompatibility enhancement in biomaterials has significant clinical implications. Better biocompatibility 

results in biomaterials that are safer and more effect ive for therapeutic applications, which include the 

regeneration of intricate tissues and organs as well as wound healing [54].  

 

To verify that biomaterials are safe and effective for use in regenerative medicine applications, biocompatibility 

assessment in biomaterial tissue engineering evaluates how biomaterials interact with biological systems. 

Introducing cultured cells to biomaterials of interest is an essential part of this assessment process. Direct cell 

seeding into the biomaterial surface or exposure to soluble extracts or breakdown products of the biomaterial 

can accomplish this [55].  

To test the compatibility and reactivity of the cells, cell seeding entails directly cultivating the cells onto the 

biomaterial's surface. Depending on the intended use and desirable cellular behavior, cells can be seeded as 

monolayers or in three dimensional (3D) arrangements. To assess cytotoxicity and biological impacts, cells can 

be subjected to biomaterial extracts or degradation products. This entails observing the biological reactions of 

cells cultured in a medium containing these extracts [56]. Common assays used to measure cell viability and 

metabolic activity include MTT and live/dead staining.  

Evaluating gene expression, ECM formation, differentiation, proliferation, and behavior of cells are all part of 

the biocompatibility assessment process. Biomaterials are designed with the use of techniques such as 

immunostaining, flow cytometry, and gene expression analysis, which helps in the characterization of cellular 

responses. The goal of biocompatibility assessment is to determine how biomaterials interact with constructions 

used in tissue engineering and facilitate tissue regeneration [57]. In preclinical models or clinical trials, this 

entails evaluating tissue development, vascularization, and functional outcomes. Tissue morphology, vascular 

network formation, and functional tissue qualities are assessed by histological analysis, imaging modalities, and 

functional assays. These evaluations offer vital information regarding the safety and effectiveness of 

biomaterial-based treatments for in vivo tissue regeneration [58]. 

6.3. Regenerative medicine 

Regenerative medicine-based biomaterials in tissue engineering are designed to promote tissue regeneration and 

repair, acting as a structural support for cell growth and differentiation to restore tissue function. Biomaterials 

utilized in regenerative medicine aim to be biocompatible, biodegradable, and capable of gradual replacement 

by newly formed tissue, integrating with surrounding tissues. These biomaterials are crucial for applications in 

bone, cartilage, skin, and neural tissue engineering, providing mechanical support and promoting cell 

differentiation and tissue regeneration [59], [60], [61]. Biomaterial scaffolds mimic the natural extracellular 

matrix structure, promoting cell adhesion, proliferation, and differentiation through surface properties like 

chemistry and topography [62]. 

These biomaterials play a key role in tissue-specific regeneration by enhancing cell viability and metabolic 

activity, enabling nutrient and bioactive chemical diffusion, and providing a temporary barrier to aid wound 

healing [63], [64]. The controlled release of growth factors and signaling molecules from biomaterials promotes 

tissue repair, while shielding therapeutic cells like stem cells from immune rejection to create a conducive 

environment for tissue regeneration. Tailoring biomaterial characteristics ensures optimal tissue integration  and 
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functionality, reflecting natural tissue signals and regulating cell behavior through bioactive compounds [65]. 

By mimicking the extracellular matrix components and incorporating growth factors and cell-binding sites, 

biomaterials promote cell adhesion and trigger angiogenesis and tissue regeneration [66]. The mechanical 

properties of biomaterial scaffolds, such as stiffness and elasticity, are matched to native tissue qualities to 

influence cellular responses and promote tissue repair [67]. 

Regulatory control of the immune response is essential in tissue engineering for regenerative medicine. 

Biomaterial post-implantation modulates the host immune system's inflammatory and healing responses, 

impacting tissue integration, side effect reduction, and treatment effectiveness. Immunomodulatory biomaterials 

have shown promise in wound healing and tissue engineering applications but face challenges in regulatory 

approval and long-term safety for clinical translation. Personalized tissue engineering, enabled by customizable 

scaffold qualities tailored to individual patient needs through advanced imaging and 3D printing, facilitates 

tailored therapies that optimize tissue restoration while minimizing side effects [68], [69]. Achieving precision 

medicine entails modifying surface chemistry, porosity, and architecture of biomaterials. The integration of 

biofunctionalization technologies, incorporating growth factors and signaling signals into scaffold architecture, 

further enhances personalized medicine and customized therapies for improved tissue regeneration outcomes 

[70, 71]. Successful translation of individualized regenerative medicine from research to clinical practice 

requires collaboration among researchers, clinicians, and industry partners to ensure safety, effectiveness, and 

long-term success for a diverse range of tissue abnormalities and medical conditions [69]. 

7. Biomaterials for neural interfaces 

Biomaterials used in neural interfaces (NIs) for bidirectional communication with the nervous system in devices 

like neural implants, brain-machine interfaces (BMIs), and neuro-prosthetics play a vital role in interacting with 

neural tissue effectively and safely. These devices stimulate neural tissue, record neural activities, and are 

essential in central nervous system (CNS) and peripheral nervous system (PNS) applications for neuro-

modulatory and neuro-prosthetic purposes. Biocompatible biomaterials used in NIs need to prevent immune 

responses such as foreign body reaction and neural cell damage like glial scar to ensure seamless integration 

with neural tissue [72, 73]. Notable biomaterials in NIs include medical-grade silicones, polyimides, and 

biocompatible metals like platinum, gold, and titanium. Additionally, functional biomaterials such as 

conducting polymers (e.g., polypyrrole, PEDOT), metals/alloys (platinum, iridium), and carbon-based materials 

(carbon nanotubes, graphene) with optimal electrical properties are crucial for effective neural signal recording 

and stimulation [74-77]. Furthermore, ensuring long-term stability in neural interface devices requires resistance 

to corrosion, oxidation, and degradation under physiological conditions. Strategies such as protective coatings, 

material selection, and surface modifications are employed to enhance device stability over time. Encapsulation, 

careful material selection, and surface modifications are key approaches to safeguard electronic components, 

enhance chemical and mechanical stability, and promote integration with surrounding t issue, ultimately 

improving the long-term performance and reliability of neural interfaces[78-80].  

7.1. Types of interfaces 

7.1.1. Neural implants  

A variety of neural implant typologies, such as microelectrode arrays (MEAs), Utah electrode array (UEA), 

deep brain stimulation electrode leads (DBS), peripheral nerve stimulators, spinal cord stimulators (SCS), and 

intracranial electrodes have been developed and classified based on various discerning factors. Classification 

criteria include their anatomical location relative to nerves and neuronal cell bodies, delineating intraneural, 

epineural, perineural, intranuclear, or cortical positioning, and tissue geometry across species, distinguishing 

implants for the central nervous system (CNS) and peripheral nervous system (PNS) [81]. This classification 

emphasizes the functional requirements and physiological considerations specific to different neural regions. 
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Moreover, implants are categorized based on their functions, such as recording neural activity, stimulating 

neural tissues, or delivering pharmacological agents in a controlled manner [82]. Designs are tailored to suit 

specific functional needs and the complex physiological environment in which the implants operate.  

The electrode design of neural implants also plays a key role in their classification, with invasiveness level 

serving as a fundamental parameter. Electrode architecture can range from surface-level interfaces to deeply 

penetrating structures, resulting in varying levels of tissue interaction and physiological impact [72]. 

Understanding these differences in invasiveness is crucial for comprehending the intricacies of electrode-tissue 

interfaces and their implications on neural function and integration. This comprehensive taxonomy, 

incorporating anatomical, functional, and invasiveness factors, offers a detailed framework for comprehending 

the diverse array of neural implants and their multifaceted purposes [82].  

7.1.2. BMIs  

BMIs, also known as Brain-Computer Interfaces (BCIs), epitomize sophisticated closed-loop systems [83,84] 

meticulously engineered to construct a direct conduit between the human brain and extrinsic apparatuses or 

machineries, consisting of fNIRS and fNIRS-EEG devices [85,86]. These intricate interfaces provide a channel 

whereby patients can exert control or engage in interaction with external devices, connecting the covert 

communicative potential of their neural activity through signal amplification emanating directly from cerebral 

substrates [87]. The overarching objective underpinning the design and implementation of BMIs is the 

realization of a symbiotic link between cerebral faculties and machine, thereby facilitating fluidic 

communication channels [88-90] and intricate control paradigms.  

7.1.3. Neuroprosthetics  

Neuroprosthetics are advanced devices engineered to interface with neural substrates to restore compromised 

neurological functions following neurotrauma [91,92]. These interventions target a range of neurological 

disabilities, providing patients with enhanced sensory, motor, and cognitive autonomy. Examples include 

cochlear implants that restore auditory function in individuals with sensorineural hearing loss [93] and prosthetic 

limbs controlled through neural interfaces, enabling precise motor commands for individuals with limb 

impairments or Tetraplegia [94,95]. 

Deep Brain Stimulation (DBS) stands out as another innovative neuroprosthetic approach for addressing 

movement disorders like Parkinson's disease and essential tremor by delivering targeted electrical stimuli to the 

basal ganglia, improving motor symptoms and quality of life [96]. Visual prosthetics represent a cutting-edge 

frontier, aiming to restore vision in visually impaired individuals by stimulating the visual cortex with electrical 

signals to evoke light and visual perceptions [97]. These neuroprosthetic advancements herald a transformative 

era in neurorehabilitation, offering individuals with neurological impairment renewed functional capabilities 

and increased quality of life. 

7.2. Applications 

Neural interfaces (NIs) have shown promising applications in the field of motor prosthetics, enabling the 

translation of neural signals encoding motor intentions into actionable commands for prosthetic limbs or 

assistive devices. This technology empowers individuals with motor impairments to perform volitional 

movements and interact with their environment [86]. Furthermore, NIs calibrated for communication aids, such 

as language models, offer a means for individuals with speech impairments to express themselves through 

assistive communication devices, leveraging neural activity for expressive and receptive communication [98]. 

In neurorehabilitation, NIs play a crucial role in facilitating neural plasticity and functional recuperation by 

incorporating closed-loop feedback mechanisms, such as augmented feedback modalities [85,94]. Additionally, 

NIs designed for neural prosthetic applications aim to restore lost sensory modalities or enhance perceptual 

capabilities by transducing neural signals into artificial sensory feedback, thereby ameliorating sensory deficits 

and reinstating sensory experiences [99]. 



 BES Vol. 6, No. 1, 2025, pp.24-50 

36 

7.3. Biomaterials used in neural implants, BMIs and Neuroprosthetics 

There are several biomaterials used in the construction of neural implants, BMIs and Neuroprosthetics to ensure 

compatibility and optimal performance. Considering biocompatibility, electrical properties, and long-term 

stability, some common biomaterials used in these devices include: 

7.3.1. Silicon 

Silicon-based materials, particularly Cubic silicon carbide (3C-SiC), are highly favored in brain-machine 

interfaces (BMIs) for their superior electrical properties and biocompatibility. 3C-SiC has emerged as a key 

material for constructing electrodes and integrated circuits in BMI frameworks, representing a significant 

advancement in neurotechnological applications [74]. Its precise control over electrical conductivity and strong 

biocompatibility makes it an ideal candidate for interfacing with neural tissues with exceptional accuracy and 

effectiveness. This material plays a crucial role in enhancing the performance and reliability of neural interface 

systems by enabling high-fidelity neural signal acquisition and processing. Its versatility allows for the 

fabrication of both electrodes and integrated circuits, further highlighting its importance in advancing neural 

interface technology  [100]. 

7.3.2. Electrode coatings  

Various coatings are applied to electrodes in neural interfaces to optimize their performance and 

biocompatibility. Examples of electrode coatings include platinum black, ruthenium oxide, platinum -iridium 

oxide, Amorphous Silicon carbide (a-SiC), PEDOT, and water-soluble poly-(styrenesulfonate) (PSS) [74,94], 

[100]. These coatings enhance charge transfer and reduce tissue damage, thereby improving the overall efficacy 

of neural recording applications. For instance, platinum black's porous microstructure increases its surface area, 

enhancing electrochemical activity and charge injection capabilities, leading to improved signal-to-noise ratios 

[101,102]. Ruthenium oxide coatings exhibit robust charge storage capacities and high charge injection limits, 

making them suitable for neural stimulation applications [103,104]. Additionally, polymer-based biomaterials 

such as polyimide and polyethylene glycol (PEG) serve as flexible substrates for electrodes, offering mechanical 

flexibility and biocompatibility. Various electrode coatings, such as platinum black, ruthenium oxide, platinum-

iridium oxide, Amorphous Silicon carbide (a-SiC), PEDOT, and poly-(styrenesulfonate) (PSS), play a crucial 

role in enhancing the performance and biocompatibility of neural interfaces [74,94,100]. These coatings 

improve charge transfer efficiency and reduce tissue damage, thereby optimizing neural recording applications. 

Furthermore, polymer-based biomaterials like polyimide and polyethylene glycol (PEG) serve as flexible 

substrates for electrodes, offering mechanical flexibility and biocompatibility [8,105]. These materials 

withstand mechanical stress in neural tissues and provide enhanced flexibility for neural interface systems.  

7.3.3. Biocompatible metals  

Metals such as gold, platinum, and titanium play vital roles in brain-machine interfaces (BMIs) due to their 

stability, biocompatibility, and electrical conductivity, making them ideal for use in electrode designs and neural 

tissue interconnects [106]. Gold's inertness and corrosion resistance, along with platinum's exceptional 

conductivity, facilitate precise neural signal recording and stimulation, while titanium's mechanical robustness 

and biocompatibility ensure efficient integration within BMI frameworks [107]. Biocompatible metals like 

iridium, tantalum, and stainless steel are also utilized in BMI architectures for their distinct mechanical 

properties, biocompatibility, and electrical conductivity [108]. Iridium's charge injection capacity is valuable 

for precise neural stimulation, tantalum's corrosion resistance is essential for chronic implantation, and stainless 

steel's mechanical strength and cost-effectiveness make it suitable for structural support in BMI applications 

[109,110]. 
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7.3.4. Nanoparticles 

Carbon nanofibers (CNF) and carbon nanotubes (CNT) are recognized for their exceptional mechanical and 

electrical properties, making them versatile biomaterials for various biomedical applications [111]. The 

incorporation of minocycline into poly (lactic-co-glycolic acid) (PLGA) nanoparticles enables controlled and 

sustained release of this antibiotic and anti-inflammatory agent at targeted sites, enhancing localized therapeutic 

efficacy [112]. Silver nanowires (AgNW), one-dimensional nanostructures with high electrical conductivity, 

flexibility, and optical transparency, are essential materials in flexible electronics, transparent conductive films, 

and biomedical devices [113]. Their unique properties, including high aspect ratio and large surface area, offer 

advantages in electrical and thermal conductivity, as well as surface-enhanced plasmon resonance effects, 

positioning them as promising candidates for advanced electronic and optoelectronic technologies [114,115]. 

 

7.3.5. Ceramic materials  

Ceramic materials, such as alumina and glass, are essential in the construction of neural interfaces (NIs) [116]. 

These ceramics provide insulation to protect electronic components from environmental factors and serve as 

protective packaging against mechanical stress and moisture ingress. In addition, ceramics offer inherent 

biocompatibility, creating a barrier between neural tissues and electronic components in NIs, reducing the risk 

of adverse tissue reactions and ensuring long-term functionality of the implanted system [117]. 

 

7.3.6. Fluorescent materials  

DAPI, or 4’,6‐diamidino‐2‐phenylindole, is a widely utilized fluorescent molecule in neural biocompatibility 

studies for precise identification of cell nuclei in immunohistochemistry [118]. By binding to DNA and emitting 

blue fluorescence under ultraviolet excitation, DAPI enables accurate quantification of cell nuclei, facilitating 

analyses of cellular distribution, proliferation, and viability within neural tissues [119]. Other fluorescent 

materials, such as fluorescent proteins (e.g., green fluorescent protein, GFP) and organic dyes (e.g., fluorescein 

isothiocyanate, FITC), are also valuable in neural biocompatibility studies, offering distinct advantages in 

visualizing specific cellular structures or processes [120]. Fluorescent proteins, genetically integrated into cells, 

allow longitudinal tracking of cellular dynamics in live imaging, enabling real-time monitoring of cellular 

behaviors in neural tissues. Organic dyes, known for their versatility and spectral properties, serve as crucial 

tools for multiplexed labeling of various cellular components, supporting comprehensive analyses of neural 

tissue morphology and function. 

Quantum dots, a promising class of fluorescent materials in neural biocompatibility studies, are characterized 

by narrow emission spectra and exceptional photostability [121]. Comprising semiconductor nanocrystals, 

quantum dots exhibit high brightness and resistance to photobleaching, making them suitable for long-term 

imaging and high-resolution visualization of cellular structures in neural tissues. Their tunable emission spectra 

enable multiplexed labeling and simultaneous imaging of multiple cellular components, facilitating 

comprehensive analyses of neural tissue architecture and function [122]. 

8. Biomaterials: Clinical applications and case studies 

8.1. Hydrogel sheets in burn wound treatment 

Burns and open wounds exhibit distinct pathophysiological characteristics, with burns causing significant fluid 

loss necessitating effective treatment modalities such as hydrogel sheets. These sheets, composed of crosslinked 

polymer chains forming three-dimensional networks, possess high fluid absorption capacities due to numerous 

hydrophilic groups (-COOH, -OH, -CONH2, -SO3H), rendering them pliable and gentle. Typically derived from 

natural biopolymers like alginate, collagen, and chitosan, hydrogel sheets can also be synthesized from materials 

like polyvinyl alcohol and polyethylene glycol [123]. Each hydrogel sheet comprises a hydrophilic polymer 
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insoluble in water and water itself, with a notable trait of causing no immunological reactions and transparency 

facilitating wound healing assessment. Demonstrating efficacy across varying burn severities, hydrogel sheets 

are commonly employed for initial burn treatment, offering cooling, hydration, exudate absorption, and wound 

contamination prevention [124]. Moreover, as demonstrated in a study comparing hydrogel sheets and silver 

sulfadiazine cream (SSD) in treating second-degree burns in 50 patients, hydrogel-treated patients exhibited 

faster recovery in 15 days compared to 21 days with SSD, with fewer reapplications (5 vs. 25) and enhanced 

usability, minimizing patient discomfort [124]. 

8.2. Biodegradable vascular scaffold (BVS) 

Cardiovascular diseases, predominantly coronary artery disease (CAD), are a leading global cause of mortality, 

characterized by arterial plaque accumulation hindering sufficient supply of blood, oxygen, and nutrients to the 

heart [125]. Percutaneous coronary interventions with stents have traditionally been the primary approach for 

acute coronary conditions, yet present drawbacks, notably impeding positive vessel remodeling and future 

revascularization, along with risks of delayed reendothelialization and localized inflammation [126]. 

Addressing these limitations, bioresorbable scaffolds (BVSs) have emerged as a promising alternative, requiring 

considerations such as flexibility, biocompatibility, and sufficient mechanical support for at least 6 months post-

implantation to facilitate arterial healing. Bioresorbable polymers (e.g., salicylic acid, poly-l-lactide) and metals 

(e.g., magnesium alloy, iron alloy) are commonly employed materials due to their temporary support capabilities 

and concurrent vessel healing, contrasting solid metal stents. Notably, BVSs are advantageous for their complete 

bio-resorption and dynamic arterial diametric modulation, particularly appealing for younger patient cohorts 

[127]. 

8.3. Dental implants 

Patients experiencing multiple tooth loss commonly opt for dental implants, crucial for both aesthetics and 

overall health. Dental implants are surgically placed in the jawbone to serve as artificial tooth roots, supporting 

prosthetic teeth. Through osseointegration, natural bone fuses with the implants, providing a durable solution 

that has made dental implants the most prevalent biomaterials in recent years [128]. Predominantly composed 

of metals like titanium, tantalum, and alloys, such as titanium-zirconium combinations for enhanced bone 

response [129], dental implants have garnered popularity due to their strength, biocompatibility, and corrosion 

resistance [130]. Research involving 10,871 implants placed over a 24-year span revealed a 3.3% implant failure 

rate, commonly associated with low bone density, prior sinus lift surgery, and smoking habits. Despite these 

challenges, success rates exceed 97% over 10 years, highlighting the high efficacy of dental implants [128], 

[131]. 

8.4. Contact lenses 

Contact lenses (CLs) are crucial ocular prosthetic devices worn directly on the eye, serving as alternatives to 

spectacles, with a global user base exceeding 150 million people [132]. Primarily utilized for vision correction, 

ocular rehabilitation, and with additional indications for prevention, diagnosis, and aesthetics, key 

considerations when selecting contact lenses include comfort, durability, practicality, and visual stability. 

Contact lenses are broadly classified into rigid gas-permeable hard lenses and flexible, high-water-content soft 

lenses, primarily composed of polymeric materials such as PMMA and HEMA-derived hydrogels [133,134]. 

Hydrogel-based lenses, offering oxygen permeability and high-water content for enhanced comfort, currently 

dominate the market, representing 65% of contact lens usage [135]. Comparative studies demonstrating no 

significant differences between spectacles and contact lenses have led to a preference for contact lenses by 

patients, with long-term contact lens wear shown to be more effective for vision correction in adults and 

children, provided eye discomfort is mitigated [136,137]. 
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Table 3: Summary of clinical applications and case studies 

Clinical applications 

and case studies 
Key points Reference 

Hydrogel sheets in burn 

wound treatment 

Characteristics: composed of crosslinked polymer 

chains forming 3D networks, exhibit high fluid 

absorption capacities 

Materials used: alginate, collagen, chitosan, polyvinyl 

alcohol, polyethylene glycol 

Benefits and efficacy: cooling and hydration, absorb 

exudate and prevent contamination, reducing 

discomfort 

[123], [124] 

Biodegradable vascular 

scaffold (BVS) 

Characteristics: provide temporary support while 

allowing for arterial healing 

Materials used: salicylic acid, poly-I-lactide, 

magnesium allow, iron alloy 

Benefits and efficacy: reducing the risk of localized 

inflammation, complete bio-resorption, allowing for 

dynamic arterial modulation 

[125], [126], [127] 

Dental implants 

Characteristics: serve as artificial tooth roots, crucial 

for aesthetics and overall dental health 

Materials used: titanium, tantalum, titanium-zirconium 

alloys 

Benefits and efficacy: high success rate, durability, 

reliability 

[128], [129], [131] 

Contact lenses 

Characteristics: high-water content, oxygen 

permeability and transmission, light transmission 

Materials used: polymer or silicone hydrogels 

Benefits and efficacy: comfort, practicality, durability 

[133], [134] 

9. Conclusions 

The past decade has witnessed a remarkable surge in the utilization of biomaterials for medical purposes, largely 

attributed to advances in regenerative medicine and tissue engineering. Biomaterials have demonstrated 

significant utility across a range of clinical applications, including tissue engineering implants, human tissue 

healing, and biosensors. Their remarkable efficacy in restoring and enhancing biological functions within 

damaged tissues is well recognized, significantly improving quality of life.  In the domain of clinical 

applications, attributes such as biocompatibility and long-term stability are crucial for the successful deployment 

of biomaterials in neural implants, orthopedic surgery, and other domains, ensuring effective integration with 

host tissues and minimizing adverse effects. The summary of the applications can be obtained from Table 4. 

Table 4: Variety of applications of biomaterials 

Application type Short summary Reference 

Injectable 

biomaterials 

- Promising advancements, providing less invasive alternatives to 

conventional treatments. 

- Commonly used materials in medical research for injectable 

biomaterials include alginate, collagen, gelatin, chitosan, fibrin in 

hydrogel or microsphere forms, as well as bioactive glasses, 

calcium phosphates, and polymethyl methacrylate (PMMA) in 

cement or paste formulations. 

[8],[138], 

[139], [140]. 

Bioactive coatings 

- Recent development of biodegradable polymers as bioactive 

coatings have aimed to promote tissue formation, wound healing, 

and prevent infections. 

[141]. 
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Surface 

modifications 

- Vital procedure to address inadequate surface properties such as 

adhesion, adsorption, and biocompatibility prior to application. 
[142]. 

biomaterials for 

drug delivery 

- Nanoparticles offer targeted drug delivery capabilities to damaged 

tissues through specific ligand coatings. 

- Hydrogels are commonly used in soft contact lenses to allow gas 

diffusion while maintaining moisture on the eye's surface. 

- Microparticles precise drug release, protection, and easy 

administration. 

[143], [144], 

[145]. 

Biomaterials in 

cardiovascular 

devices 

- Metals like stainless steel, cobalt, titanium, and shape memory 

alloys are prevalent in cardiovascular medicine for producing 

artificial heart valves, endovascular stents, and stent-graft 

combinations. 

- Natural biomaterials commonly used in bioprosthetic heart valves 

(BPHVs) include decellularized tissues such as small intestine 

submucosa, pericardium, heart valves, and arterial walls. 

[10], [12]. 

Biomaterials in 

orthopedics 

- Traditional metal choices like stainless steel and titanium, known 

for their strength and durability, have been long-standing favorites 

in orthopedic treatments. 

- Ceramics, alumina and zirconia, polymers, synthetic bone grafts, 

biological growth factors, nanomaterials together with 3d printing 

technology are commonly used in orthopedic treatments. 

[15],[17],[18], 

[22],[27],[28],            

[31], [33]. 

Nanotechnology in 

biomaterials 

- Nanotechnology in drug delivery enhances therapeutic efficacy 

and minimizes side effects by utilizing nanomaterials as carriers for 

targeted delivery, reducing systemic distribution. 

[39]. 

Biodegradable and 

bioresorbable 

biomaterials 

- Biodegradable and bioresorbable biomaterials enable gradual 

degradation within the body, facilitating tissue regeneration without 

necessitating replacement. 

[146]. 

Biomaterials 

regulation and 

ethics 

- Biomaterial development necessitates compliance with 

international and country-specific regulations and ethical 

guidelines. 

- Following these standards ensures the efficacy, safety, and 

responsible utilization of biomaterials in various applications. 

[147],[148], 

[149], 

[150],[151]. 

Biocompatibility 

and 

immunomodulation 

- A key focus in current research is on immunomodulation to 

enhance tissue regeneration and control immune responses. 

- Biocompatibility is a critical aspect in biomaterial development, 

ensuring that materials do not induce harmful effects in the body. 

[152],[153], 

[154],[155], 

[156],[157], 

[158],[159]. 

Biomaterials for 

tissue engineering 

- Scaffold design plays a critical role in tissue engineering by 

providing a framework for cell attachment, proliferation, and 

differentiation. 

- Regenerative medicine-based biomaterials in tissue engineering 

are designed to promote tissue regeneration and repair, acting as a 

structural support for cell growth and differentiation to restore 

tissue function. 

[44],[59], 

[60], [61] 

Biomaterials for 

neural interfaces 

- Biomaterials in neural interfaces include medical-grade silicones, 

polyimides, and biocompatible metals like platinum, gold, and 

titanium. Additionally, functional biomaterials such as conducting 

polymers (e.g., polypyrrole, PEDOT), metals/alloys (platinum, 

iridium), and carbon-based materials (carbon nanotubes, graphene) 

[74],[75],[76], 

[77], 

[106],[111], 

[116], [160] 
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with optimal electrical properties are crucial for effective neural 

signal recording and stimulation. 

- Biomaterials used in neural implants, BMIs and neuro-

prosthetics: silicon, electrode coatings, biocompatible metals, 

nanoparticles, ceramic materials and fluorescent materials. 

Biomaterials in 

clinical 

applications 

- Hydrogel sheets in burn wound treatment, 

- Biodegradable vascular scaffold, 

- Dental implants, 

- Contact lenses. 

[92], [123], 

[125], [132] 

The integration of biomaterials with regenerative medicine offers immense potential for addressing clinical 

challenges like organ failure and tissue abnormalities through innovative methods such as 3D printing. It is 

imperative to adhere to international regulations and ethical considerations in developing and applying 

biomaterials. Continued research is necessary to improve these materials' biodegradability, non -toxicity, and 

biocompatibility profiles, paving the way for more impactful future applications in clinical settings. 
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